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ABSTRACT 

We propose a new optimization model for non-rigid registration of images using multi-metrics. The ordinary searching 
step of optimization has been often trapped in local minima and produces wrong registration results. In this paper, if the 
condition occurs, multi-metrics model will switch to the other metrics to get rid of the local minima, vice versa, until 
optimization cannot proceed any more for any of the metrics. We have tested our approach in a variety of experimental 
conditions and compared the results with the optimization without multi-metrics. The results indicate that the new model 
is robust and fast in non-rigid registration. 
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1. INTRODUCTION 
Given two image sets acquired from the same patient but at different time or by different devices, image registration is 
the process of finding a geometric transformation between the two respective image-based coordinate systems that maps 
a point in the first image set to the point in the second set that has the same patient-based coordinates, i.e. represents the 
same anatomic location [1]. This notion presupposes that the anatomy is the same in the two image sets, an assumption 
that may not be precisely true if, for example, the patient has had a surgical resection between the two acquisitions [2].  

Non-rigid image registration is an increasingly important technology in both clinical and research applications [11]. And 
it has been demonstrated by Mattes et al. [1] that the Free-Form Deformation is a feasible approach, capable of accurate 
non-rigid registrations.  

However, current popular metrics such as mean squares metric [3], [5], mutual information metric [7], [8] and normal 
vector information [4] all have several local minima in the high dimension of the parameter vector μ  of FFD [5], [6], 
[12]. Also various optimization strategies, like steepest gradient-descent method [4], [5], and BFGS method [6] are easy 
being trapped in these local minima, which will lead to a wrong result of registration. Those make the minimization 
process a difficult optimization problem.  

This work focuses on optimization using more than one metric, that is, using metrics alternatively, switch the registration 
metric from one to another when the optimization process finds a result. This will avoid the searching step of 
optimization from trapping in local minima to a large extent. 

The paper is organized as follow: In Section 2, we gave the criterion of metrics and Free-Form Deformation, and Section 
3 is the optimization process using multi-metrics. Section 4 describes the results of the experiments, and conclusions are 
given in Section 5. 

2. METHODS 
2.1 Free-Form Deformation 
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The FFD model is based on B-splines [1], [9]. The basic idea of FFD is to deform an object by manipulating an 
underlying mesh of control points. The resulting deformation controls the shape of the 3-D or 2-D object and produces a 
smooth and 2C  continuous transformation. 

To define a spline-based FFD, we denote the domain of the image volume as {( , , ) | 0 ,0x y z x X y YΩ = ≤ < ≤ <  

, 0 }z Z≤ < [1]. Let Φ denote a x y zn n n× × mesh of control points , ,i j kφ  ( lμ ) with uniform spacing δ . Then, the 
FFD can be written as the 3-D tensor product of the familiar 1-D cubic B-splines: 
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where lB represents the l th basis function of the B-spline  
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2.2 Mutual Information 

The mutual information of two images is based on the concept of information theory and expresses the amount of 
information that one image A contains about a second image B [8], which is a combination of the entropy values of the 
images, both separately and jointly.  

Entropy can be interpreted as a measure of dispersion of a probability distribution. It is low when a distribution has a few 
sharply defined, dominant peaks and it is maximal when the distribution is uniform. 

Here, we use Mattes et al. [1] implementation for the MI computation. The negative of mutual information S between the 
reference image and the transformed test image as the measure can be expressed as a function of the transformation 
parameters μ: 

( , | )( ) ( , | ) log
( | ) ( )T R

pS p
p pι κ

ι κ μμ ι κ μ
ι μ κ

= −∑∑             (3) 

Where p , Tp  and Rp  are the joint, marginal test, and marginal reference probability distributions, respectively. The 

histogram bins are indexed by integer values ,0 RLκ κ≤ ≤  and ,0 TLι ι≤ ≤ , where RL and TL are specified numbers 
of uniformly sized bin along the respective dimensions of the joint histogram of the reference and test images. 

2.3 Normal Vector Based Similarity Measure 

We propose a new metric computed from the normal vector (NV) instead of cultural method using pixel grey value. The 
NV of a point in an image is the NV of a contour line for two-dimensional (2D) images or the NV of an iso-surface for 
three-dimensional (3D) images, basing the contour or iso-surface on the gray level of the point.  

In the NV based measure, the difference between the NVs in the test and reference images is summed to evaluate the 
similarity between these two images, which is similar to the mean squared intensity difference measure that computes the 
intensity difference between pixels in the test image and pixels in the reference image to assess the similarity between 
them. As the cosine value of the included angle of two vectors can be adopted to evaluate the difference between them, 
the mean of the squared cosine included angle of the corresponding NV values in the two images can be used to evaluate 
how closely the two images are registered. 

Let T be the test image when registered to the reference image R by applying the transformation F. The NV based 



 
 

 
 

measure S is employed as the similarity criterion in our registration framework, and defined as: 

21( , , ) cos ( ( ), ( ( )))
( ) T RX V

S T R F N X N F X
card V

θ
∈

= ∑        (4) 

Where, card(V) is the size of the volume(V) that the measure samples points within the test image T; X is the coordinate 
of point P from V; F(X) means the coordinate of P’ in the reference image mapped from P in image T by transformation F. 

( )TN X denotes the transformed NV value of point P; ( ( ))RN F X is the NV of the corresponding point P’ in 

transformed image R. θ  represents the included angle between the two NV vectors. 

2.4 Mean Squares Metric 

Mean squares metric computes the mean squared pixel-wise difference in intensity between the test image T and the 
reference image R over a user defined region: 
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Where, iT is the i-th pixel of Image T, iR  is the i-th pixel of Image R, N is the number of pixels considered. 

The optimal value of the metric is zero. Poor matches between images T and R result in large values of the metric. This 
metric is simple to compute and has a relatively large capture radius. It relies on the assumption that intensity 
representing the same homologous point must be the same in both images. Hence, its use is restricted to images of the 
same modality. Additionally, any linear changes in the intensity result in a poor match value. 

3. MULTI-METRICS OPTIMIZATION METHOD 
To find the optimal transformation, we improve the L-BFGS-B optimization (Broyden- Fletcher- Goldfarb- Shanno) [5], 
[6], [10], a limited-memory, quasi-Newton minimization package, to reduce the cost function until termination criterion 
is satisfied.  The limited-memory method is useful here because of the high dimensionality of the parameter space. 
Instead of estimating the entire Hessian during minimization, only a low-rank approximation is calculated, allowing 
linear or super-linear convergence rates. 

The advantage of the L-BFGS-B method is the speed that it can reach the minima quickly. However, the method can not 
avoid the searching step from being trapped in local minima. In the other side, the robustness of the measures is 
questionable. Hence we propose a hybrid optimization model based on multi-metrics for the reason that there is much 
less chance for a point in the searching space being trapped at the local minima of various metrics at the same time than 
of single metric. 

The optimization is stated as a function: 

0 ,arg min( ( ))FM μμ μ= −                       (6) 

Where 0 , ( )FM μ μ  denotes the similarity measure as a function of the parameters, the B-spline coefficientsμ . 0μ  

denotes the initial coefficients of optimization, and F is the termination criterion, the function for judging whether to 
terminate the optimization process.   

First set one of the metrics 1M as M , and its corresponding terminating function 1F  as F , then search the minimum. 

After the L-BFGS-B optimization process stopped, which means μ  may have been found, change M for the other 

metric 2M , set the resulted μ  as 0μ and 2F  as F , start the optimization again, which can be demonstrated as:  

,0 1
21argmin( ( )),

2arg min( ( ))
FM FM

μ μμ μ−= −        (7) 

When find another minimum, switch back the metric and start optimization again. Repeat the above procession, until the 



 
 

 
 

optimization cannot proceed any more for both of the metrics, which equals that the value of iμ is the same as 1iμ −  and 

2iμ − , then iμ  is the found global minima. 

The hybrid optimization process is shown in Fig.1. 

4. EXPERIMENTS 
In the following, examples based on the proposed approach for MRI-MRI and CT-MRI registration tasks are presented. 
The results of each registration are given to evaluate the performance. The programs are based on MS Visual C++ 
environment and run on a P-IV 2.60 GHz PC with 512MB main memory and MS Windows XP. 

In the registration, we adopt linear interpolation when needed and use improved L-BFGS-B optimization.  

In fact, the L-BFGS-B method needs the derivatives of the metric with respect to the parametersμ . However, different 
metrics cost different time for calculating derivatives, e.g. the Mattes implementation of Mutual information is much 
faster than Mean Squares Metric or NVI, for the reason it cost less time in calculating derivatives. In order to accelerate 
the minimization process, we adjust the optimization model, altering the parameters of BFGS optimization for the slower 
metric to reduce the iteration number of searching. 

4.1 MRI-MRI Registration 

In the Mono-Modality experiments, both MI and Mean Squares Metric (MS) are used in the registration (calculating NVI 
and its derivatives cost much more time than them), and two groups of experiments on 2D MRI images of the brain are 
performed. In these experiments, the B-spline deformations all used 10×10 control mesh. 

In the first experiment, the images for non-rigid registration are shown in Fig.2 (a) and (b). Both images are of size 
256×256. As Fig.2 shows, (c) is the difference image between (a) and (b), (d)- (f) are the transformed test image after 
registration using MI, MS, MI & MS,  respectively, (g)-(i) are the difference images after the three methods of 
registration. Correspondingly, Table.1 shows the registration time, Squared Sum of Intensity Difference (SSD) and 
Correlation Coefficient (CC) of them.  

It is clear that the registration using MI only is the fastest method of the three that only need 5.016s to finish registration, 
but the result is unsatisfactory for the reason that MI metric has trapped the searching process in local minima.  On the 
other hand, the registration using only MS demonstrates a good result of image alignment, but costs too much time for 
calculating. The Multi-metrics model integrates the advantages of the two methods above, it cost less time and produce a 
satisfactory registration result.  

Next, we still used the Fig.1 (a) as the test image, and transformed it by 5 groups of randomized parameters, then add 1% 
noise randomly in the transformed images. The noised images are performed registration with Fig 1(a), and in these 
experiments, the maximum number of optimizing iteration for MS metric in Multi-metrics model is set to 5 in order to 
reduce the cost time for registration. 

Figure 1: The optimization algorithm based on multi-metrics

Initialize 0μ  
Repeat 
 Set 1M as the measure M  
 Set 1F  as F  

Do L-BFGS-B to calculate 0 ,arg min( ( ))FM μ μ−  
Set the optimization result above as 0μ  
Set 2M as the measure M  

 Set 2F  as F  
Do L-BFGS-B to calculate 0 ,arg min( ( ))FM μ μ−  
Set the optimization result above as 0μ  

Until both of the optimization processes can not proceeds any more 
 



 
 

 
 

 

 
The registration results are demonstrated in Table.2, and Fig.3 presents the searching route of three optimization methods 
for data1 (the 1st row in Table.2), which shows that the MI&MS optimization is still robust with 1% noise while the MI 
optimization route stops at a higher SSD value than it, and the speed of optimization using MI&MS is almost 2 times of 
the method using MS only. 

Table 1:  Registration time, SSD and CC of optimization using MI, MS, MI&MS, respectively. 
Before Registration MI MS MI&MS 

Run time — 5.016s 403.157s 320.797s 
SSD(mean) 2073.86 429.056 2.502 2.511 
CC 0.85809 0．96089 0．97976 0．98089 

Table 2 : Registration time, SSD and CC of optimization using MI, MS, MI&MS, respectively. 

 MI MS MI&MS 
Time(s) SSD CC Time(s) SSD CC Time(s) SSD CC 

Data1 7.156 392.41 0.97323 163.745 227.068 0.97856 33.703 225.484 0.97922 
Data2 2.359 400.13 0.93154 77.843 229.13 0.97328 29.5 230.085 0.97790 
Data3 5.297 433.98 0.95659 83.312 233.464 0.97695 44.015 231.029 0.97639 
Data4 4.875 423.01 0.94493 77.765 249.693 0.97721 43.312 249.67 0.97545 
Data5 10.218 305.08 0.97006 63.531 238.311 0.97424 32.531 238.82 0.9766 

Figure 2: Registration images: (a) The test image; (b) The reference image; (c) the difference image between (a) and 
(b); (d)-(f) the transformed test image after registration using MI only; Mean Squares Metric only; MI & Mean 
Squares Metric for multi-metrics optimization model, respectively; (g)-(i) the difference image between image (d)-
(f) and (b), respectively. 



 
 

 
 

 

 

Figure 3: The searching routes of optimization using MI&MS, optimization using MI only and optimization 
using MS only. 

Figure 4: Registration images: (a) The test image; (b) The reference image; (c)-(e) the transformed test image after 
registration using MI only; NVI only; MI & NVI for multi-metrics optimization model, respectively; (f)-(h) the 
fusion image between image (c)-(e) and (b), respectively. 



 
 

 
 

 

4.2 CT-MRI Registration 

In multi-modality registration, because MS can only be used for mono-modality, Normal Vector Information metric 
(NVI) and MI are used to do registration. The 2D images being registered are both of size 250×250. In these experiments, 
the B-spline deformations are used 6×6, 10×10, 14×14 control mesh, respectively. 

Fig. 4 shows the registration result of 14×14 control mesh. Fig.4 (a) is the test image, (b) is the reference image; (c)-(e) 
are transformed test image after registration using MI, NVI, MI &NVI, respectively, (f)-(h) are the fusion images after 
the three methods of registration. Moreover, Table.3 shows the registration time and final MI values of registration using 
6×6, 10×10, 14×14 control mesh.  

 
The table demonstrated that in multi-modality registration, optimization method using MI only is still fast but easy being 
trapped in local minima. NVI metric and its gradient need much more time to calculate than MI, and produce worse 
result. The multi-metrics optimization model produces the most accurate registration result in three, and its registration 
process does not need so much time as NVI does. 

5. CONCLUSION 
In this paper, we present a novel multi-metrics optimization model for non-rigid registration using FFD. It is tested 
feasible. Compared to the optimization using only one metric, the model is more robust. If one of the chosen metric for 
multi-metrics model costs much time for computing value and gradients, adjusting the optimization parameters for this 
metric can accelerate the optimization process.  

The initial framework is proposed here and we will pay more efforts to exploit its further merits. As the further work, we 
are scheduling to find another multi-modality metric which is faster than NVI to cooperate with MI to do multi-modality 
registration. 
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